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Abstract. The ferroelectric phase transition in a small particle depends on its size. Analytical
results concerning the size dependence of the transition temperature, and the polarization profile
in the ferroelectric phase have been obtained within a phenomenological model, which has
been previously studied only numerically. The model does not take into consideration the
depolarization field, assuming full compensation of surface charges. The dynamic susceptibility
deviates from Debye-like behaviour in exhibiting a broadening at higher frequencies. The static
susceptibility obeys the Curie–Weiss law, and exhibits a similar divergency at the point of the
size-driven transition.

1. Introduction

The size effect is undoubtedly important for small ferroelectric particles as regards the
explanation of the ferroelectric phase transition and dielectric properties of powders,
composites, and ceramics. The transition temperature is usually lower than the Curie
temperature, and has turned out to depend on the particle size. It decreases with decreasing
particle diameter in BaTiO3 [1], PbTiO3 [2], and KDP [3], and there is no transition below
a critical size.

In some cases the transition temperature can be higher than the Curie temperature. This
assertion is supported by the observations for thin films of KNbO3 [4] and TGS [5, 6], in
which both an increase and a decrease of the transition temperature were observed, probably
depending on the sample preparation.

The dielectric constant decreases with decreasing particle size in PbTiO3 composites
[7], and it was proposed that this occurs due to the gradual creation of a multidomain state
in the larger particles. An unusual peak of the dielectric constant versus the particle size
was observed for BaTiO3 [8].

Two main theoretical explanations of the size effects for composites are proposed.
The first concept stresses the significance of the depolarization field and a space charge

layer, which try to break up the particle into domains of different polarization. The
multidomain ferroelectric state disappears in small enough particles, and concomitantly
the dielectric constant exhibits a peak [9].

Within the second approach, full compensation of the surface charges is assumed to have
taken place after some time, and thus the depolarization field does not then exist. Instead, a
surface layer with a different transition temperature to that of the bulk is considered. This
causes the shift of the phase transition in the particle, and an inhomogeneous distribution of
the polarization [10]. In reference [10], the authors studied the static properties by means
of numerical calculations.
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In the present paper we have analytically solved the latter phenomenological model for
the second-order phase transition in the spherical particle. The generalization of this model
enables us to obtain the temperature- and size-dependent dynamical dielectric susceptibility
of the particle.

2. The model

The phase transition in a ferroelectric particle has been successfully described within the
Landau theory. For the second-order phase transition, the total free energy reads [10]

F =
∫
(V )

d3r

[
1

2
A(T − TC)P 2+ 1

4
BP 4+ 1

2
D(∇P)2− EP

]
+
∫
(S)

d2r

[
1

2
Dδ−1P 2

]
(1)

whereP is the position-dependent polarization, andTC is the Curie temperature of the
bulk crystal. The first term describes the interior region with spatially independent positive
interaction constantsA,B,D, while the second one is included to account for the surface.
The lengthδ characterizes the surface, and depends also on the surroundings of the particle.
Its value can be either positive or negative. One can obtain the polarization profile by
minimizing the free energy (1). To simplify the problem, we shall consider a particle of
spherical shape, with the radiusR. For the sake of simplicity, we further assume that the
polarization lies in a single direction, and that its valueP(r) depends on the radiusr only.
The free energy in spherical coordinates becomes [10]

F
4π
=
∫ R

0
dr r2

[
1

2
A(T − TC)P 2+ 1

4
BP 4+ 1

2
D(∇P)2− EP

]
+ 1

2
DR2δ−1P 2

S (2)

wherePS ≡ P(r = R). On the basis of geometrical considerations, it was proposed that
the coefficientδ depends on the radiusR as follows [10]:

1

δ
= 5

2R
+ 1

δ∞

(
1− a0

2R

)
(3)

whereδ∞ is the limiting value corresponding to the flat surface (R = ∞), anda0 is the
lattice spacing. For the sake of simplicity, we shall further assume a size-independent
δ. Nevertheless, the expression (3) could be taken into account at the end, by a simple
substitution into the formulae obtained. It was stressed in reference [10] thatδ becomes
positive for small enough particles in the case of negativeδ∞ as well.

3. Size dependence of the Curie temperature

The Curie temperature can be calculated by analysing the stability of the equilibrium state
P(r) against small perturbationsδP (r). The linearized equations of motion forδP (r, t)
and forδPS(t) can be derived as follows:

ρ
∂2δP

∂t2
+ 0∂δP

∂t
= 1

r

∂2(r δP )

∂r2
−
(
A(T − TC)

D
+ 3

B

D
P(r)2

)
δP (4)

ρS
∂2δP S

∂t2
+ 0S ∂δP

S

∂t
= −

(
∂δP S

∂r
+ 1

δ
δP S

)
(5)

whereρ and ρS are densities, and0 and0S are friction coefficients (divided byD) for
the bulk and the surface. To analyse the stability of the para-phase we putP(r) ≡ 0, and
consider a single-harmonic perturbation:δP = δPω eiωt andδP S = δP Sω eiωt . The frequency
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Figure 1. A graphical representation of certain equations: equation (11) (δ > 0, TP < TC );
curves 1: tank0R; and 1′: k0R/(1− Rδ−1); and equation (13) (δ < 0, TP < TC ); curves 2:
tanh|k0|R; and 2′: |k0|R/(1− Rδ−1).

is, in general, a complex number reflecting the damping. The equations for the amplitudes
become

∂2(r δPω)

∂r2
+
(
k2
ω − 3

B

D
P(r)2

)
r δPω = 0 (6)

and

∂δP Sω

∂r
+ δ−1

ω δP Sω = 0 (7)

where

k2
ω =

A(TC − T )
D

+ ρω2+ iω0 (8)

δ−1
ω = δ−1− (ρSω2+ iω0S). (9)

The eigenfunctions are solutions of equation (6):

δPω = C sinkωr

r
(10)

and substituting the last expression into equation (7), one obtains the equation for the
eigenvaluesω:

kωR +
(
R

δω
− 1

)
tankωR = 0. (11)

The system becomes unstable when the frequency of the soft mode is zero. The transition
temperatureTP is a solution of equation (11) forω = 0. To obtain this solution, one should
realize that ifT < TC , then k2

0 ≡ k2
ω=0 > 0 (see equation (8)), and equations(10), (11)

contain realk0 for ω = 0. If T > TC then k2
0 < 0, k0 is purely imaginary, and equations

(10) and (11) can be rewritten as

δPω=0 = C sinh|k0|r
r

(12)

|k0|R +
(
R

δ
− 1

)
tanh|k0|R = 0. (13)
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The graphical representation of equation (11) (and equation (13)) is shown in figure 1.
There are also approximative solutions in some cases:

TP = TC − 3D/A

R2

R

δ

R

|δ| �
1

4
(δ > 0 or δ < 0) (14)

TP =
(
TC − π

2D/A

R2

)
+ 2π2D/A

R2

(
δ

R

)2
R

δ
� 1 (δ > 0) (15)

TP =
(
TC + D/A

δ2

)
+ 2D/A

δ2

(−δ
R

)
R

−δ � 1 (δ < 0) (16)

TP =
(
TC − π

2D/A

4R2

)
+ 2D/A

R2

(
1− R

δ

) ∣∣∣∣1− Rδ
∣∣∣∣� 1 (δ > 0). (17)

Figure 2. The profile of the soft-mode amplitude: curve 1 is forTP < T < TC (δ > 0,
equation (10)); and curve 2 is forTC < TP < T (δ < 0, equation (12)).

For δ > 0, the Curie temperatureTP < TC , as can be seen also in the limiting-cases
equations (14) and (15), and in figure 1. In this casek2

0 > 0, and the spatial distribution of
the polarization of the soft mode is described by equation(10); see figure 2. This means
that the phase transition occurs over all of the particle volume, and the surface shifts the
transition temperature toTP . For largeR, the temperatureTP approachesTC (see equation
(15)), and the surface term in the free energy(2) becomes small compared with the bulk
term (i.e., the ratioR2δ−1/R3 = 1/Rδ→ 0).

Different behaviour appears forδ < 0. Then TP > TC , and the shape of the
soft mode assumes an exponential character near the surface; see equation (12), and
figure 2. The phase transition sets in inside the surface layer, the thickness of which is
k−1

0 =
√
A(TP − TC)/D. This is evident for large radiusR (i.e., a planar surface). Then

the transition temperatureTP approaches the valueTC + δ−2D/A > TC , even if the surface
term is small (1/Rδ → 0) compared with the particle volume. The polarization becomes
nonzero inside the layer near the surface, while it is zero at distances larger thank−1

0 ∝ δ.
For δ > 0, there can exist a critical radiusRC below which the ferroelectric phase does

not exist. The numerical value ofRC is a solution of equation (11), obtained puttingTP = 0
andω = 0. Smaller particles do not undergo the phase transition. The phenomenological
formula used in reference [2] has the same form as expression (14). The typical course of
the dependence oftP ≡ TP /TC on the radiusR is shown in figure 3, where we use the
same coefficients as in reference [10].
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Figure 3. The size dependence of the phase transition temperaturetP ≡ TP /TC ; the parameter
used is a dimensionless combination:δ

√
ATC/D = 15.

Let us note that if we adopt the size dependence of the parameterδ according to
equation (3), then its value becomes always positive for small enough particles.

4. The spatial distribution of the spontaneous polarization

Let us consider a temperatureT below the transition temperatureTP . Further, we consider
TP < TC , i.e. δ > 0. The polarizationP(r) could be obtained by solving equations (6) and
(7), puttingω = 0. Instead of doing this, we assume the profile to have the approximate
form

P(r) = P0
sinkpr

r
k2
p =

A(TC − TP )
D

> 0 (18)

where the amplitudeP0 should be calculated. Substituting (18) into (2) and minimizing the
free energy, one easily derives the equilibrium value

P 2
0 =
−I1

I2

A

B
(TP − T ) T < TP (19)

where

I1 = −4(kpR)
4

(
1− sin 2kpR

2kpR

)
(20)

I2 = [−3+ 4 cos 2kpR − cos 4kpR + 8kpR Si(2kpR)− 4kpR Si(4kpR)]kp. (21)

(Si is the sine integral function.)
The average polarizationPav over the particle volume is

Pav = 3P0
sinkpR − kpR coskpR

(kpR)3
. (22)

In a particle with the radiusR, the average polarizationPav ∝ (TP − T )1/2. Let us fix the
temperatureT , and only vary the radiusR. ThenPav ∝ (R − RP )1/2 for R > RP , and
Pav = 0 for R < RP . RP is the radius at which the size-driven phase transition occurs.
The size dependence ofPav according to expression (22) is compared with that calculated
numerically; see figure 4. A good agreement occurs near the phase transition driven by
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Figure 4. The size dependence of the averaged polarizationPav at the temperaturet = 0.85;
the same coefficients were used as for figure 3. Curve 1 (bold curve): expression (22);
curve 2 (dotted curve): numerical calculation; and curve 3 (full curve): the bulk value
Pav/
√
ATC/B = (1− t)1/2 .= 0.39.

the change of the particle size(RP < R < 7δ), while far enough away (forR > 7δ) the
polarization departs from the approximative formula (22), approaching the bulk value

Pav = A

B
(TC − T )1/2

for the large particles. This reflects the fact that theansatz(18) is valid for temperatures
satisfying the inequalities(TP − T )/TP � 1 andTP − T � TC − TP . Outside this region,
the coefficient of the linear function (19) becomes temperature dependent.

5. Susceptibility

In accord with equations (6) and (7), the equations of motion for dynamic susceptibility
read

1

r

∂2(rχω)

∂r2
−
(
−k2

ω + 3
B

D
P(r)2

)
χω = − 1

D
(23)

∂χSω

∂r
+
(

1

δω

)
χSω = 0. (24)

First, we study the paraelectric phase, in whichP(r) = 0. Then the solution of equation
(23), finite atr = 0, is

χω(r) = Cω sinkωr

r
− 1

Dk2
ω

(25)

where the constantCω is determined by putting (25) into (24):

Cω = R2

D

1[
kR + (Rδ−1

ω − 1) tankωR
]
k2
ωδω coskωR

. (26)

Finally, the total susceptibility, derived by integration ofχω(r) over the volume of the
particle, becomes

χtotω =
4π

V

∫ R

0
dr r2χω(r) = 1

Dk2
ω

[
tankωR − kωR

(Rδ−1
ω − 1) tankωR + kωR

3

δωk2
ωR
− 1

]
. (27)
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(a)

(b)

(c)

Figure 5. The dynamic susceptibility of the high-temperature phase;R/δ = 4/3, δ
√
ATC/D =

15; (a) t = 0.5; (b) t = 1; and (c)t = 3. The ratio of relaxation times is:τS/τ = 0 (curves 1);
τS/τ = 0.45 (curves 2); andτS/τ = 1.35 (curves 3).
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(a)

(b)

(c)

Figure 6. Cole–Cole plots of the susceptibilities shown in figure 5. (a)t = 0.5; (b) t = 1;
and (c)t = 3; τS/τ = 0 (curves 1);τS/τ = 0.45 (curves 2); andτS/τ = 1.35 (curves 3). The
full-line semicircle represents the Debye relaxation.

Let us further considerρ = ρS = 0. Then one obtains Debye-like relaxation for the bulk
crystal:

χbulkω = 1

ATC

((
T

TC
− 1

)
− iωτ

)−1

with the high-temperature relaxation timeτ = 0D/ATC . From equation (9), one can
also define the characteristic relaxation time of the surface,τS = 0Sδ. Expression (27)
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has in general an infinite number of complex zeros, and the spectrum should be more
complicated than that for the simple Debye relaxator. The main features are demonstrated
in figures 5 and 6. When the ratioτS/τ is small, the susceptibilityχtotω is well approximated
by the Debye relaxator for a wide range of low and high temperatures. The broadening
of the high-frequency side of the relaxation peak increases with increasingτS/τ and with
increasing temperature. In the Cole–Cole diagram, a deviation from the Debye process
occurs, and it resembles the more complicated relaxation described by the Havriliak–Negami
expression [11].

Let us study the temperature dependence of the susceptibility. We can rewritekω as

k2
ω = k2

p,ω −
A

D
(T − TP ) k2

p,ω =
A

D
(TC − TP )+ ρω2+ iω0 (28)

and expandχtotω in T − TP :

χtotω
.= 1

Dk2
p,ω

([
(tankp,ωR − kp,ωR)

/{
[(Rδ−1

ω − 1) tankp,ωR + kp,ωR]

+ kp,ωR tankp,ωR + Rδω
2kp,ωR

AR2

D
(T − TP )

}]
3

δωk2
p,ωR

− 1

)
. (29)

For nonzeroω, the dynamic susceptibility does not diverge atTP . The static susceptibility
χtot0 exhibits Curie–Weiss behaviour nearTP :

χtot0
.= 1

Dk2
p

(
tankpR − kpR

kpR tankpR + Rδ−1

6D

AδkpR2

1

T − TP

)
(30)

whereT > TP andkp ≡ kp,0. The Curie constant andTP are functions of the radiusR.

Figure 7. The size dependence of the static susceptibilityχ0 at the temperaturet = T/TC =
0.85; δ

√
ATC/D = 15. RC is the critical radius, andRP is the radius for whichtP = t . Curves

1 and 1′ are obtained from formula (27) (see the text); and curve 2 shows the numerical results.

Expanding expression (27) inRP − R, one can obtain the size dependence of the
susceptibility at the fixed temperatureT . The radiusRP is the one for which the transition
temperatureTP = T . The static susceptibility reads

χtot0
.= 1

Dk2
0

(
tank0RP − k0RP

(k2
0RP − δ−1) tank0RP − RP δ−1k0

3

δk2
0RP

1

RP − R
)

(31)

whereR < RP and the particle is in the paraelectric state. To study the susceptibility of the
ferroelectric phase, i.e. whereR > RP or T < TP , one should solve equation (23) using the
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polarization profileP(r) given by equation (18). This is a difficult task, and for simplicity
we putP(r) = Pav in equation (23);Pav is determined by equation (22), and depends onR

andT . Then the susceptibility again has the form of equation (27) (and of equations (30)
and (31)), but with the renormalized wave-vector

k2
ω =

A(TC − T )
D

− 3
B

D
P 2
av + iω0

and with T < TP andR > RP . So the susceptibility obeys the Curie–Weiss law from
both sides of the phase transition, i.e.χtot0 ∝ 1/|R − RP | andχtot0 ∝ 1/|T − TP |. The size
dependence of the static susceptibility is plotted in figure 7. The approximative solution
considered above is valid just aboveRP , as follows from the comparison with the exact
(numerical) solution. Note that the susceptibility exhibits a peak (it diverges due to the
second-order phase transition) atR = RP . A similar maximum of the size-dependent
dielectric constant was observed for BaTiO3 [8], and explained alternatively in reference [9].

6. Conclusions

We have analytically investigated the Landau-type model of the second-order ferroelectric
phase transition in small particles that was recently studied numerically, as described in
reference [10]. The model assumes that the surface charges are fully compensated, and that
the phase transition is modified mainly due to the different properties of the surface layer.

Our main results concern both static and dynamic properties. The size dependence of
the transition temperature could change fromTC−TP ∝ 1/R to TC−TP ∝ 1/R2 on varying
the coefficients and the radius; see equations (14)–(17). The former case has been used in
the literature [2]. BelowTP , the order parameter is position dependent, with a Landau-type
temperature behaviour. The approximative profile (18) is valid near the phase transition
point; see figure 3.

The dynamic dielectric susceptibility is more complicated than a simple Debye-like
relaxation. This difference increases with the ratio of surface and bulk relaxation times
τS/τ , and with increasing temperature. The asymmetric Cole–Cole plot resembles the
Havriliak–Negami stretched relaxation. Note that the assumption of full compensation can
be justified for the low-frequency region. However, at higher frequencies, the compensating
charges are retarded with respect to the oscillating polarization, and the depolarization field
that arises causes further broadening of the high-frequency part of the dielectric dispersion.

The static susceptibility obeys a typical Curie–Weiss temperature dependence. The size
dependence exhibits similar behaviour: at a given temperatureT , the divergence occurs
for particles with the radiusRP (T ); see figure 7. This is in accord with the maximum of
static susceptibility observed for BaTiO3 [8]. Particles with radii smaller thanRP are in the
paraelectric state, while those with radii larger thanRP are in the ferroelectric state.

Note that the size-driven phase transition, and the similar behaviour of the polarization
and susceptibility discussed in this paper can be obtained also within a model in which
just the depolarization field is considered [9]. Therefore it is sometimes rather difficult to
choose the more appropriate model; e.g., both approaches have been used in the discussion
of experiments on ceramics and powders of BaTiO3 [9, 12].

In composite materials, the irregular shapes of the particles (causingδ to become a
function of the position), as well as a distribution of particle sizes, the randomness of the
particle surroundings, and interparticle interactions, lead to a more complex picture of the
phase transition [13].
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